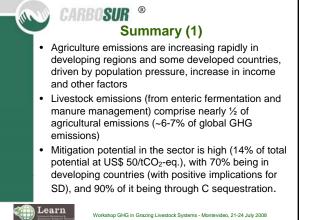
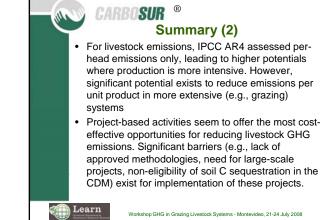

Carbon price (US\$/tCO ₂ -eq)	Economic Potential 2030 in Agriculture (GtCO ₂ -eq/yr)
20	1.6 (0.3-2.4)
50	2.7 (1.5-3.9)
100	4.4 (2.3-6.4)
Baseline Emissions in 2030	8.2
	Source: PCC Fourth Assessment Report (2007), Vol 3, on of organic soils; Rice managemen of potential is carbon sequestration
	lture is very high, but reduction of ry limited contribution to that potenti O ₂)
Learn Workshop GHG in Grazing	

Mitigation under grazing conditions. Practices identified in IPCC AR4
Improved feeding practices
 Pasture improvement
 Supplementation with concentrates
 Adding oils or oilseeds to the diet
 Optimizing protein intake to reduce N excretion (impact on N₂O emissions)
Specific agents and dietary additives
 Ionophores and antibiotics, halogenated compounds, condensed tannins, essential oils, probiotics, propionate precursors, vaccines, bST and hormonal growth implants
Source: IPCC Fourth Assessment Report (2007), Vol 3, Ch.8
Workshop GHG in Grazing Livestock Systems - Montevideo, 21-24 July 2008

CARBOSUR [®] Implementation of Project Activities	anu
Possible standards for livestock emissions Kyoto mechanisms: JI, CDM Voluntary markets: VCS	
Baseline methodologies Per head, per ha, or per unit product? No methodologies have been approved for grazing livestock emissions IPCC factors may be used (no need to actually measure emissions)	•
Additionality (GHG reductions additional to baseline scenario) Required for CDM and VCS, not necessarily for JI	
Project boundaries Only GHG reductions within boundaries are accountable	
 Leakage (emissions outside boundaries) May be very significant and difficult to account if feed is imported from outside project boundaries 	·
Displacement of livestock from project area may also cause leakage Learn Workshop GHG in Grazing Livestock Systems - Montevideo, 21-24 July 2008	Can Learn


	ect Case #2: Pasture improvement with
11	ble to same conditions as case #1 (extensive livestock systems n low-quality pastures over large areas).
 Baselin 	e estimated as emissions per unit of product
maintai	activity: pasture improvement on a fraction of land area, ning the same grazing area as in the baseline, with or without nentation
• GHG b	enefits:
– Red	uced CH4 and N2O emissions (per unit product only).
– Incr	eased CO2 removals (C sequestration in soils)
 Associ 	ated benefits
– Imp	roved land productivity and resilience, soil conservation
	uced emissions from deforestation (where it is driven by expansion of ing areas) and reduced pressure on land.
Learn	Workshop GHG in Grazing Livestock Systems - Montevideo, 21-24 July 2008


0	Learn
	Statute Printers Barnet

	(CH ₄)	from Urugua
	Range	Improved Pasture
Total Digestible Nutrients (%)	50	55
Crude Protein (%)	9	13
Fibre Detergent Acid (%)	50	41
Pasture productivity (kg d.m./ha/yr)	1,840	3,500
Intake (kg d.m./head/day)	6.3	7.1
Weight gain (kg/head/day)	0.16	0.47
Stocking rate (livestock units/ha)	1	1.37
Meat production (kg/ha/yr)	60	237
Emission factor (kg CH ₄ /head/yr)	45.8	51.0
Emissions per unit area (kg CH ₄ /ha/yr)	45.8	69.9
Emissions per unit product (kg CH4/kg meat)	0.76	0.29

Pasture Improvement	: an example (N₂O)	from Urugua
	Range	Improved Pastur
Total Digestible Nutrients (%)	50	55
Crude Protein (%)	9	13
Fibre Detergent Acid (%)	50	41
Pasture productivity (kg d.m./ha/yr)	1,840	3,500
Intake (kg d.m./head/day)	6.3	7.1
Weight gain (kg/head/day)	0.16	0.47
Stocking rate (livestock units/ha)	1	1.37
Meat production (kg/ha/yr)	60	237
Emission factor (kg N ₂ O/head/yr)	1.5	2.1
Emissions per unit area (kg N ₂ O/ha/yr)	1.5	2.9
Emissions per unit product (kg N ₂ O/kg meat)	0.025	0.012
Learn Workshop GHG in Grazing	L	Source: Mieres and Martino, unpubli video, 21-24 July 2008

	Range	Improved Pastur
CH ₄ emissions per unit product (kg CH ₄ /kg meat)	0.76	0.29
N ₂ O emissions per unit product (kg N ₂ O/kg meat)	0.025	0.012
Total emissions per unit product (kg CO ₂ -e/kg meat)	27.1	12.0

