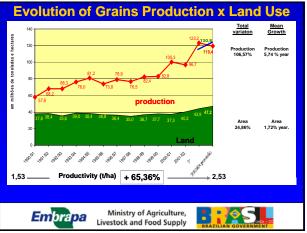
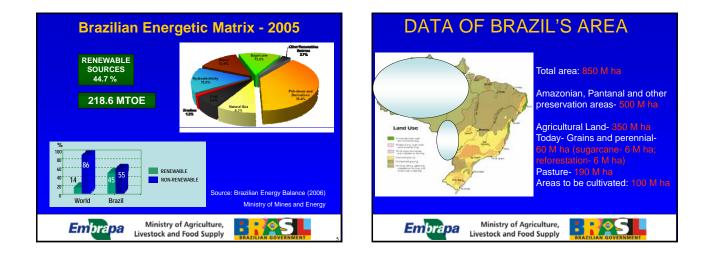


SOIL CARBON SEQUESTRATION IN TROPICAL


OUTLINE


- 1- Brazilian Agribusiness
- 2- Anthropogenic GHG Brazil
- 4- Carbon Sequestration Potential of Brazil

B ASL

- 6- Evaluation and Discussion of data
- 8- Final Considerations

TOTAL ANTRHROPOGENIC
GREENHOUSE GASES (GHG) EMISSION
IN BRAZIL- 1994

- TOTAL- 1,480 Tg CO₂ equivalent
- 1,030 Tg CO₂
- 13.2 Tg CH₄
- <u>5</u>50 Gg N₂O
- 75% total GHG emission agriculture and land-use changes- deforestation and biomass burning, mainly Amazonian rainforest (around 1 % of GDP)

•

Embrapa Ministry of Agriculture, Livestock and Food Supply • LIVESTOCK- 9.8 Tg CH₄/year

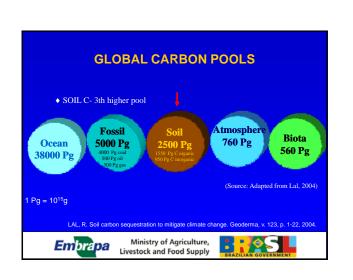
• TOTAL- 13.2 Tg CH₄/year

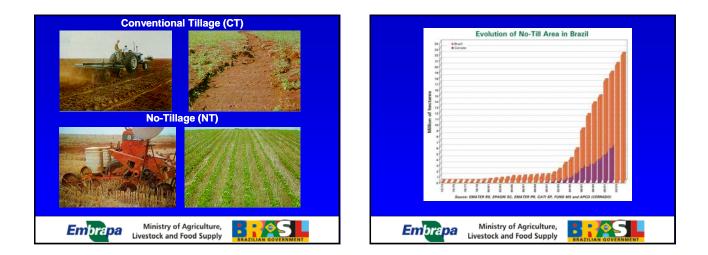
• AGRICULTURE- 10.2 Tg CH₄/year

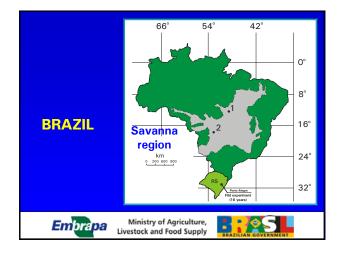
(92% enteric fermentation and 4% animal manure)

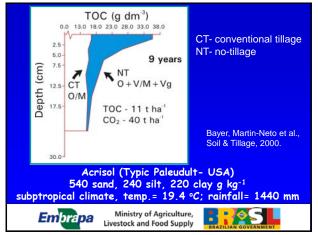
BRAZIL'S CH₄ EMISSION

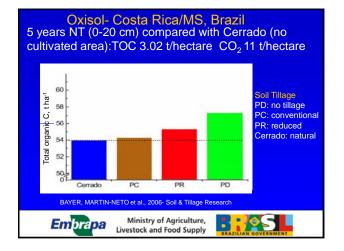
- Correspond to 16% total GHG emission of Brazil or 12% total world livestock CH₄ emission and 2% of the global anthropogenic sources
- Bovine herd in Brazil- ~195 Mi

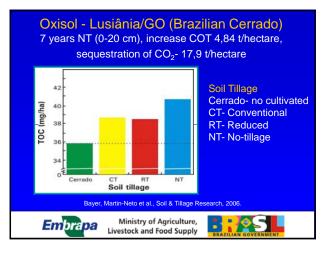



SOIL ORGANIC MATTER (SOM) IN BRAZIL	 SOIL CARBON SEQUESTRATION IN GRASSLANDS Some literature data showing tropical grassland
• Tropical and subtropical regions (Brazil)- soil	(mainly African origin) capacity to carbon
organic matter (SOM) - major factor to soil	sequestration - Fisher et al., 1994 (Nature); South
quality- fast turnover compared temperate areas,	America- 250 M ha grassland- 0.1-0.5 Pg C year ⁻¹
kaolinite (clay 1:1, low cation exchange	(deforestation and land-use changing- 1.2 Pg C/year)
capacity)	• Total Brazilian pastureland : 190 Mi ha (<i>Brachiaria</i>
 Conventional tillage- erosion, reduction of soil fertility and structure, decrease of SOM (CO₂ emission) 	 <i>spp</i> 80 M ha) Conant et al., 2001- soil carbon sequestration rate in grassland in 17 countries, incluindo UK, NZ, Canada, Brazil and USA (26% of worldwide grassland)- rate
• No-till (direct drilling)- maintain and/or increase SOM (CO ₂ sequestration, other advantages	011 to 3.04 Mg C ha ⁻¹ year ⁻¹ – mean value 0.54 Mg C ha ⁻¹ year ⁻¹ , dependence weather and biomes
Embrapa Ministry of Agriculture,	Embrapa Ministry of Agriculture,
Livestock and Food Supply	Livestock and Food Supply


Potential of Carbon Sequestration in Brazil- Soil possibilities


- Brazilian Savanna area (Cerrado)- 200 M ha-4% of agricultural land worldwide
- Mitigation of greenhouse effect Lal, 2004 (Science)
 - Soil conservative procedures
 - No-tillage or direct drilling to grains and perennial cultures (no strong winter in Brazil)
 - Recuperation of degraded land (including degraded pastureland from a total 190 M ha)


Embrapa Ministry of Agriculture, Livestock and Food Supply



Mean value of soil carbon sequestration in Brazil in grain areas under no-till • Data from Bayer, Martin-Neto et al., 2006 using own results and from several other published data from Brazil: Savanna- 0.35 Mg C/ha year (variation= -0.03-0.60 MgC/ha ano) layer 0-20 cm, soils under no-till, soybean and corn mainly (sequestration- 1.26 Mg

 CO_2 /ha year⁻¹) - Sub-tropical region BR= 0.48 MgC /ha year (variation= 0.19-081 Mg C/ ha year), layer 0-20 cm, soils under no-till, soybean, corn, wheat, and leguminous (cover plants) (winter- more rainfall than in the Savannah regions)

Embrana Ministry of Agriculture, Livestock and Food Supply

Ministry of Agriculture,

Brachiaria decumbens experiment LOCAL: Embrapa- Southeast Cattle Research Center São Carlos, São Paulo State- central region of Brazil (21°58' S. 47°50' W) SOIL: Latosol red-yellow, with 25% of clay, pH 4 20°C, Climate: Mean annual temperature average annual rainfall 1360 mm Period: 27 years

Ministry of Agriculture,

Livestock and Food Supply

•

MSL

Embrapa

TREATMENTS

> *T00* (control): 27 years under pasture;

 \succ t0: no surface liming, but with mineral fertilization (400 kg y^1 N-ammonium sulfate and K₂O, after 1999);

>*t2m*: 2 t ha⁻¹ of surface limestone application, with NK fertilization and 1 t ha⁻¹ y⁻¹ reinforcement of limestone application, after 1999;

>*t4sa*: 4 t ha⁻¹ of surface limestone application without mineral fertilization, after 1999;

Reference: Cerradão – Brazilian savanna area (dense Cerrado in transition to a native mesophyle semideciduous tropical forest)

Embrapa Ministry of Agriculture, Livestock and Food Supply <section-header>

Depth (cm) cerradão (reference) Tur 0-10 25 31	t0 64	t2m	t4s:
	64		
		57	56
10-20 25 24	27	44	42
20-40 25 42	41	41	41
40-60 22 32	34	29	27
60-80 15 25	24	28	21
80-100 17 20	22	24	28
TOTAL 129 174 (0-100)	212	223	21

CARBON SEQUESTRATION - soil

treatment	C sequestration rate (Mg C ha ⁻¹ ano ⁻¹)
Т00	1.7
t0	3.1
t2m	3.5
t4sa	3.2
	sequestration: 0,18 a 1,89 Mg C ha ⁻¹ year ⁻¹ sequestration in no-till areas in Brazilian savannah r ¹ vear ⁻¹ (laver - 0-20 cm)
mean value: 0,35 Mg C ha	

Mitigation Potential

- Carbon sequestration value of 1.7 to 3.5 Mg C ha⁻¹ year⁻¹ (or 6.24 to 12.8 Mg CO₂ ha⁻¹ year⁻¹) in the experimental site of São Carlos- Embrapa Southeast Cattle Res. Center;
 Probably main reason: very high net aerial primary productivity 33 t/ha/year and net primary productivity below ground- 24 t/ha/year (total 57 t/ha/year) of African grasses (Fisher et al., 2007- Tropical Grassland- Australia)
- Potential estimate to Pastureland in Brazil (using our data): 80 Mi ha (Brachiaria spp)- 0.5 to 1.0 P g CO_2 year⁻¹ 50 Mi ha (just % of total pastureland area) - 312 Tg CO_2 year⁻¹ (using lowest sequestration rate of 6.24 Mg CO_2 ha)
- Total Brazilian Agriculture CH₄ emission 232 Tg CO₂-eq year

: @SL

Ministry of Agriculture, Livestock and Food Supply Embrapa

OTHER FACTORS TO BE CONSIDERED DUE TO NITROGEN FERTILIZERS USE

- Nitrogen fertilizers fossil derivative Production of 1 kg N generate 4 kg CO₂
- N_2O formation in soil- 296 times more effective to greenhouse effect than CO₂

Ministry of Agriculture, Livestock and Food Supply Embrapa BIASL

Сгор	Local	Soil	Dose kgNha ⁻¹	Emission kgN-N ₂ O ha ⁻¹ day ⁻¹
Brachiaria ¹	Rondônia/ Brazil	Oxisol	33-40	0.6-0.9
Grassland ²	Rondônia/ Brazil	Oxisol	100	0.04-2.8
Maize ³	Ohio/USA	Clay	150	1.8
Maize/peanut	Malasia	Franco D	180	1.9
Maize/oat5	New Zealand	Silty DD	160	9.2-12
Mayze/wheat	Germany	Silty DD	170 - 210	3.1-10.1
d drainage; DD:	Deficient drainag	je		
	., 2003; 2- Steud et al., 2002; Sehy		Jacinthe & Dick	, 1997; Khalil et al.,

	N ₂ O in Brazil
•	Data obtained in Brazil are generally smaller than results from other regions mainly temperate soils
•	Probably main reason- Oxisol are well drainage soils – avoid soil water saturation and formation of N_2O (data from Alves et al., 2006)
•	However additional research must be performed in the several biomes with different soils and climate characteristics to minimize uncertainty in data
	Ministry of Agriculture, Livestock and Food Supply

FINAL CONSIDERATIONS

- Evidences of carbon sequestration in tropical grassland mainly from Africa origin (Brachiaria) in Brazil
- Next step: to increase number of field measurements in different biomes and livestock production systems in Brazil and include GHG fluxes analysis
- Soil carbon evaluation- high variability (space and time) – new tools to field measurements
- Certification procedures including to CDM and carbon footprint
- Qualitative (stability and lifetime estimate) carbon studies are also relevant (use of soil fractionating methods and spectroscopic techniques, as laser induced fluorescence- Milori, Martin-Neto et al., 2006- SSSAJ)

Embrapa Ministry of Agriculture, Livestock and Food Supply Mitig Lion SUSTAINABLE PRODUCTION SYSTEMS GRAINS-CATTLE-FORESTRY INTEGRATION SYSTEM Brazilian Cerrado (Savanna region)

ACKNOWLEDGMENT

- PROCISUR- Dr. Emilio Ruz (Financial support to participate in the Workshop)
- LEARN Initiative Dr. Hayden Montgomery
- Brazilian Agricultural Research Corporation-Embrapa – Dr. Alexandre Cardoso and Claudio Buschinelli

Embrapa Ministry of Agriculture, Livestock and Food Supply

