

- emission processes
- why use models?
- OVERSEER and NZ-DNDC models
- · comparisons of emissions estimates
- take home messages

Why use models?

- measuring N₂O fluxes accurately from grazed pastures is very challenging
- the high spatial and temporal variability the largest sources of uncertainty
- the number and frequency of measurements needed make this very difficult to achieve
- an alternative is to use empirical or simulation models that incorporate the major regulatory processes.

OVERSEER: Nutrient budget model

A decision support software

- for maintenance nutrient and lime requirements
- nutrient use efficiency
- environmental effects
- also provides greenhouse gas emissions estimates

Uses farm-friendly inputs

Has been modified and tested for New Zealand's grazed pasture systems (NZ-DNDC)

Land use	Annual N ₂ O entestone (kg N ₂ O-N ha ⁻¹ Measured Modeled	
Deiry-grazed	8.8-14.7	11.9-14.3
Beef-grazed	n ie	6.5-9.3
Sheep-grazed	3.7-6.5	5.5-6.1
Deer-grazed	nta	4.9-7.4
Un-grazed	0.9-2.8	1.9-3.0
Cropping	2.3 - 3.2 (seasonal)	6.0-7.4
Pine	0.6	n/a

Upscaling Vid input parameters: And use: crop types, acreage, rotation Soil charactenstics: SOC, pH, clay contain, bulk density, soil water regimes Management: fartiliser, irrigation, tillage, grazing; Livestock population including dairy catile, beef cattle, sheep, deer, pigs, putty etc. Environmental variables: rainfail; temperature Modeled = 4.2±24 E Gg PCC - 2.29 Eg (-23% to -697%)

NZ-DNDC vs. OVERSEER				
	NZ-DNDC	Overseer	5	
Output data	Daily and Annual	Long-term annual average		
Scale	Paddock, Region, Nation	Farm	13	
Current users	International Researchers	NZ only Farmers	/	
Published model	Yes	No	-	
Free availability	Yes (DNDC)	Yes		
N ₂ O emission	Process-based	IPCC default method		
NO ₃ - leaching	Yes	Yes		
Nitrification inhibitors	Yes	Yes		
Soil CH ₄ and CO ₂ fluxes	Yes	No		
Enteric methane	No	Yes		
Estimated farm energy use	No	Yes		
Nutrient budgets	No	Yes		
Uncertainty	Can be estimated	More difficult to determine		

Take home messages

- emissions change with changes in soil moisture resulting from rainfall and/or irrigation
- emissions vary with soil types, timings of fertilisation and grazing events/regimes
- emissions increase with increasing soil compaction, C levels, stock numbers and levels of fertiliser application
- emission Factors (EFs) are different for dairy- and sheepgrazed systems.
- OVERSEER approximates farm scale emission estimates
- NZ-DNDC offers a way forward for the development of regional and national emissions inventories, and assessing mitigation strategies.

Acknowledgements

- Our national and international research and policy collaborators
- Members of the NzOnet and Methnet groups
- New Zealand Ministry of Agriculture and Forestry
- New Zealand Foundation for Research, Science and Technology

