

Tim Clough

Lincoln University New Zealand

How can we mitigate N_2O emissions from excreta N?

- Change the animals diet? – modify the C/N ratio?
- Stand-off/feed pads?

Covered feed & loafing pad

Uncovered feed & loafing pad

(Cecile De Klein, AgResearch 2008)

How can we mitigate excreta N?

- Change the animals diet?
 - Increase C and modify the C/N ratio?
 - Stand-off/feed pads
 - Use nitrification inhibitors e.g. dicyandiamide (DCD)

The inhibitor temporarily blocks the active site of a specific enzyme (ammonia monooxygenase)

Internationally peer reviewed and published literature:

- Di, H.J., Cameron, K.C., 2002. The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland. *Soil Use and Management* 18, 395–403.
 Di, H.J., Cameron, K.C., 2003. Mitigation of nitrous oxide emissions in spray irrigated grassland by treating the soil with dicyandiamide, a nitrification inhibitor. *Soil Use and Management* 10, 284–390.
 Di, H.J., Cameron, K.C., 2004a. Effects of the nitrification inhibitor dicyandiamide on potassium, magnesium and calcium leaching in grazed grassland. *Soil Use & Management* 10, 284–390.
 Di, H.J., Cameron, K.C., 2004a. Effects of the nitrification inhibitor dicyandiamide on potassium, magnesium and calcium leaching in grazed grassland. *Soil Use & Management* 10, 274.
 Di, H.J., Cameron, K.C., 2004a. Effects of the particular soil under spay irrigation a lysmetter study. *New Zealand Journal of Agricultural Research* 47, 351-361.
 Di, H.J., Cameron, K.C., 2004e. Effects of temperature and application rate of a nitrification inhibitor, eco-nTM, to decrease initrat leaching in a deep sandy soil under spay irrigation a lysmetter study. *New Zealand Journal of Agricultural Research* 47, 257-362.
 Di, H.J., Cameron, K.C., 2004e. Effects of temperature and application rate of a nitrification inhibitor, dicyandiamide (DCD), on nitrification rate and nicrobial biomass in a grazed pastures soil. Astratial normal of Soil Lease intrate leaching from grazed pastures soil. Astratian Journal of Soil Research 42, 27-9232.
 Di, H.J., Cameron, K.C., 2006. Nicross oxide emissions from two dairy pastures oils as affected by different rates of a fine particle suspension nitrification inhibitor, dicyandiamide, Soil oxide emissions from two dairy pastures soils as affected by different rates of a fine particle suspension nitrification inhibitor, dicyandiamide, Soilogy and Ferrility of Soils 42, 472

Some of the data required to develop an N₂O inventory consists of:

- Animal numbers
- N excreta
- Direct emission factors
 - EF1 N₂O emitted from fertiliser
 - EF3_{PRP} N₂O emitted from urine and dung
- Indirect emission factors
 - EF5 N₂O emitted from leached N
- IPCC guidelines for National Greenhouse Gas Inventories 2006

For a mitigation to be included in an inventory we also must know:

- · Animal numbers affected by mitigation tool?
- Changes in N excreted?
- Time period of the year mitigation tool works?
- Changes in direct emission factors ?
- Changes in indirect emission factors ?
- Verification?

Summary of international peer reviewed literature: DCD effect on direct N₂O emissions

• The reduction in direct N₂O emissions $EF_{3(PRP)}$ averaged 67% \pm 6% (std dev. n=4.)

Summary of international peer reviewed literature: DCD effect on NO₃⁻ leaching

 The reduction in nitrate leaching Frac_(LEACH) averaged 74% ± 4% (std dev. n=5.)

Calculating DCD emission factors (EF)

 $EF1`plusDCD` = (IPCC\ default\ EF1) - (IPCC\ default\ EF1 \times \frac{50\%}{100\%} \times \frac{5\ months}{12\ months}) = 0.0099$ $kg\ N_2O/kg\ fertiliser-N$

 $EF3_{rer} ' plus \ DCD - n' = (IPCC \ default \ EF3_{rer}) - (IPCC \ default \ EF3_{rer} \times \frac{50\%}{100\%} \times \frac{5 \ months}{12 \ months}) = 0.0079 \ kg \ N_2O/kg \ excreta-N$

(Clough et al. 2007 Nutr. Cycl. Agroecosyst. 78:1-14.)

Module	2003 Agriculture (New Zealand)			
Submodule	Agricultural soils			
Worksheet	4.5 (3 of 5)			
Sheet	Direct nitrous oxide emissions from animal production (grazing animals)			
Pasture, range and paddock AWMS	N excretion for AWMS PRP (kg N)	Emission factor for AWMS (EF ₃ _{PRP}) (kg N ₂ O-N/kg N)	Total direct animal prodn. emissions of N ₂ O-N (Gg)	Total direct animal prodn. emissions of N ₂ O (Gg)
PRP nil DCD	1,386,897,313	0.0100	13.869	21.794
PRP plus DCD	143,375,290	0.0079	0.836	1.314

Verification ???

Summary

- Identify main N₂O sources and mitigation strategy.
- Peer reviewed science of mitigation tool.
 - Changes in N excreted?
 - Duration of mitigation effect(s)?
 - Changes in direct emission factors ?
 - Changes in indirect emission factors ?
- Verification.

 - Animal numbers affected by mitigation tool?
 Land area affected by mitigation tool Use technology! e.g. GPS.

DCD degradation and microbiology

- Soil bacteria utilise and degrade DCD.
- Numbers of nitrifiers not affected.
- N₂-fixers not affected by DCD.
- Repeat application of DCD in laboratory studies has little or no effect on rate of DCD decomposition or ability of DCD to inhibit nitrification.
- Moir et al. (2007, Soil Use & Mgt) shows no change in response to DCD after four years of field data collection in NZ.

Internationally peer reviewed and published literature:

- Di, H.J., Cameron, K.C., 2002. The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland. Soil Use and Management 18, 395-403.
 Di, H.J., Cumeron, K.C., 2003. Mitigation of nitrons oxide emissions in spray irrigated grassland by treating the soil with dicyandiamide, a nitrification inhibitor. Soil Use and Management 18, 395-403.
 Di, H.J., Cameron, K.C., 2003. Mitigation of nitrons oxide emissions in spray irrigated grassland by treating the soil with dicyandiamide, a nitrification inhibitor. Soil Use and Management 19, 284-290.
 Di, H.J., Cameron, K.C., 2004a. Effects of the nitrification inhibitor dicyandiamide on potassium, magnesium and calcium leaching in grazed grassland. Soil Use & Management 20, 2-7.
 Di, H.J., Cameron, K.C., 2004a. Effects of the episandy soil under spray irrigation a lysimeter study. Nev Zealand Journal of Agricultural Research 47, 351-361.
 Di, H.J., Cameron, K.C., 2004c. Effects of the mitrification rate and application rate of a nitrification inhibitor, dicyandiamide (DCD), on nitrification rates of a nitrification inhibitor, dicyandiamide (DCD), on nitrification rates and microbial biomass in a grazed pasture soil. Natural and Soil Research 42, 927-932.
 Di, H.J., Cameron, K.C., 2005. Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures. Agriculture, Ecosystems and Environment 109, 202-212.
 Di, H.J., Cameron, K.C., 2006. Nitrous oxide emissions from two dairy pasture soils as affected by different rates of a fine particle suspension nitrification inhibitor, dicyandiamide, *Biology and Ferrility of Soils* 42, 472-480.

Eo-n	Typically total
supplies over	surface area
400 particles	covered is les:
per square	than 1% at
centimetre.	100kg per ha

Nitrosomonas bacteria are widespread throughout the soil and they all need to be treated.

