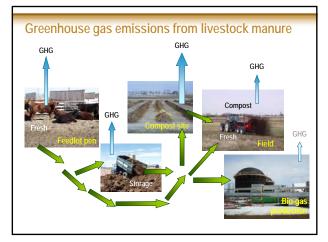


Introduction

- Globally, the agriculture sector contributes 12-14% of greenhouse gas (GHG) emissions
- The livestock production contributes approximately 11% of GHG emissions in Canada, mainly in the form of $\rm CH_4$ and $\rm N_2O$
 - 8% from enteric fermentation
 - 3% from manure management
- Canada is committed to reducing GHG emissions and livestock industry must play a role

Livestock operations

- Current trend is towards large confined operations
 Produce huge quantities of manure
 - Apply it to a small land area
- · Alberta has 6.6M cattle (43% of the national herd)
 - County of Lethbridge licensed feedlot capacity: ~750,000 head
 Several feedlots >25,000 head
- Manure is disposed of rather than used as fertilizer for crop production
- Manure management is
 a major environmental issue



Objective:

 \bullet Review CH_4 and N_2O emissions from livestock manure and suggest possible mitigation strategies

GHG emissions from livestock manure

Mitigation strategies

- Diet manipulation
- Animal production management
- Manure storage
- Composting
- Land application
- Bio-energy production

Processes controlling CH₄ emission

- CH₄ emission influenced by:
 - production (methanogens)
 - consumption (methanotrophs)
 - pathways to emitting surface
- CH₄ production increases with:
 - Rich organic matter substrate
 - Lack of oxygenRedox potential below 200 mV
 - Near neutral pH
 - Sufficient nutrients (N, P, K, S)
 - Electron acceptors such as NO₃

(Conrad, 1989)

Processes controlling N₂O emission

Nitrification and denitrification

- Nitrification requires NH₄⁺, O₂
- Denitrification requires NO₃⁻ and anaerobic conditions
- Affected by:
 - aeration
 - available N
 - pH
 - moisture
 - soluble C
 - C/N ratio
 - temperature

Diet manipulation

Why?

- Improve feed efficiency
- Produce better end product
- Control cost of feedstuff
- How?
 - Protein, amino acid, dry matter intake
 - Fibre level
 - Enzymes
 - Phase feeding
 - Feed supplement and additives

Diet manipulation

- · Effects on manure properties:
 - C and N concentrations
 - inorganic vs. organic forms and proportions
 - pH
 - soluble C
 - C/N ratio
 - volatile fatty acids (VFA)
- · These in turn affect GHG emissions

Diet manipulation - examples

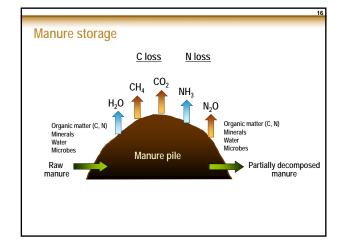
- Concentrate supplement
 - decreased enteric CH₄ emission (18%)
 - increased ${\rm CH}_4$ emission from slurry storage
 - net reduction: 12%
- Forage type in dairy cow diet
 - no effect on N₂O and CH₄ emissions during manure storage (Külling et al., 2003)
- High dietary crude protein (N)

 more N₂O production, but lowest CH₄ emission from manure storage (Kulling et al., 2001)
- Shac[®] natural feed additive in beef cattle finishing diet
 did not affect CO₂, N₂O or CH₄ emissions from manure
 - reduced NH₃ emission

(Hao et al., 2007)

(Hindrichsen et al., 2006)

	Diet type C		Control		
	Parameter	Ryegrass	Lucerne	Kale	soil*
Slurry	Solid (%)	6.4	8.1	5.9	
	TN (%)	0.24	0.77	0.34	
	NH ₄ -N (%)	0.087	0.498	0.201	
	C/N ratio	11.7	4.0	5.8	
N ₂ O	Aerobic (32 d, kg/ha)	2.16	3.14	6.98	0.70
	Anaerobic (4 d, kg/ha)	0.05	0.09	0.32	0.08
	soil: no slurry applied acteristics: pH 7.1; BD: 1.2	2 g/cm ³ ; NO ₃	-N: 4.9 mg/l	L; NH ₄ -N:	3.1 mg/L


Animal facilities – mitigating GHG emissions

Swine fattening facility

- fully slotted floor vs. deep litter system
 - lower N₂O emission; similar CH₄ emission
- Swine fattening facility
 - straw flow system vs. force ventilation fully slotted floor system
 - lower N₂O and CH₄ emissions (Amon et al., 2007)
- Laying hens facility
 - droppings dried on ventilated belt vs. prolonged in-house deep-pit storage
 - lower CH₄ emission, but similar N₂O emission (Fabbri et al., 2007)

(Philippe et al., 2007)

- Manure temperature
 - cooling manure (<10°C) reduces CH₄ production from animal housing (Monteny et al., 2006)

GHG emissions during manure storage

Solid manure

- Amendment

- Compaction

- Covers

Bedding material

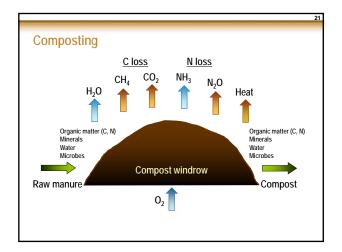
Manure management options

Liquid manure

- Covering
- Solid and liquid separation
- Dilution
- Aeration
- Chemical amendments
 - pH
 - Staloson[®], Biosuper[®]

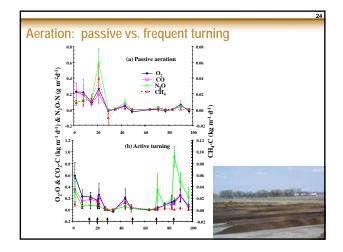
Covering solid manure during storage

- Extent of reduction dependent on stage of storage


- · Separated solids from bio-digested swine manure slurry

 - Covered vs. non-covered; 4 months of storage
 CH₄ emission reduced by 87%; N₂O emission reduced by 42%
 - (Hansen et al., 2006)
- Beef cattle manure - Covering and compacting reduces N_2O emission
- (Amon et al., 2007)

Liquid manure management	
 Swine lagoon pull-plug system (1-week cycle) vs. periodic flush lower CH₄ emission 	(Sharpe et al., 2002)
 Liquid manure covering with straw increases N₂O and CH₄ emissions 	(Berg et al., 2006)
Swine slurry covering or reducing slurry pH reduces GHG emissions	(Amon et al., 2007)
 Stored swine slurry dilution and using additives such as NX23[®], Staloson[®] and Biosuper[®] reduces CH₄ emission 	(Martinez et al., 2003)


	Untreated	Separated	Digested	Straw cover	Aerated
Storage (80 d)	91.21*	41.29	37.03	119.03	51.64
Storage – solid fraction		14.81			
Field application (20 d)	1.19	2.40	0.86	3.67	1.68
Total emissions	92.40	58.50	37.89	119.73	53.32
Storage / total (%)	98.7	95.9	97.7	96.9	96.8
Field / total (%)	1.3	4.1	2.3	3.1	3.2

emits more GHG than does slurry from cattle. (Dinuccio et al. 2008)

Year	Comparison	1
1997	Aeration: passive vs. active	
1999	Bedding material: straw vs. wood chips	In Contraction
2002	Added phosphogypsum vs. control	All the second
2004/05	Dietary antibiotics vs. control	
2005	Cattle mortalities vs. manure only	A LO
2006	Cattle vs. specified risk materials (SRM)	C. Set
2007	Dietary dried distillers' grains with solubles	aller the f

Composting and GHG emissions

Solid swine manure

- Adding nitrite-oxidizing bactera reduces N₂O emission (Fukimoto et al., 2006)
 Manure piles
- Adding straw reduces CH₄ and N₂O by increasing C/N ratio (Yamulki, 2006)
- Manure amendments
 - C-rich amendments (e.g., straw, wood chips) reduces N₂O emissions (Mahimairaga et al., 1995)
- · Compost amendment

Adding phospho-gypsum reduces CH₄ emission (Hao et al., 2005)

Composting and GHG emissions

Compost pile size

- Larger piles increases CH₄ and N₂O emissions due to poor aeration (Fukumoto et al., 2003)
- Aeration
 - Forced aeration and turning reduces CH₄ emission
- Compost pile porosity

(Sommer and Moller, 2000)

Higher porosity reduces N₂O emission

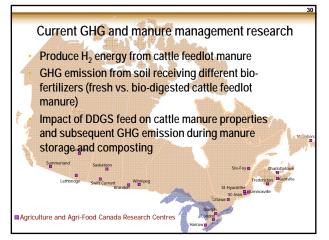
· Bedding material for feedlot cattle

 In open windrow composting, no differences in GHG emissions from manure between straw bedding and woodchip bedding (Hao et al., 2004)

Land application of manure – N₂O emissions

Manure applied

- Type of livestock manure
- Total and available C, N content
- C/N ratio
- Moisture content
- Soil physical properties
 - Moisture
 - Texture
 - Porosity
- Tillage and irrigation
- Emissions from soil are higher with livestock manure than with mineral fertilizer (Bhandral et al., 2007)



Summary

- Strategies can reduce C and N content in manure (e.g., diet manipulation) and retain nutrients and reduce GHG emissions (e.g., manure management)
- Research must consider the entire cycle of GHG generation, including diet formulation, animal metabolism, storage and treatment of excreta, and field application of manure
- Mitigating GHG requires an integrated perspective
- Agronomic, economic, environment, health and safety, social and technical factors must be considered

28

